
Fig

HETEROGENEOUS PERSONAL 

COMPUTING: A CASE STUDY IN

MATERIALS SCIENCE 

• The main objective of this work is to build a 

Heterogeneous Runtime Environment (HRTE) 

that efficiently supports the execution of programs 

defined by a visual program environment, to be 

executed in a desktop PC with one or more 

accelerators. 

HModules

• Can have several implementations over different 

hardware and parallel runtime environments

• Can be interconnected with other HModules or 

classical Modules

• Minimizing intrusion in PSE code

• PSE scheduler sees HModules as normal Modules

Motivation for HRTE HModules and HRTE Case Study
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• Scientific computing has been evolving towards the 

use of heterogeneous architecture encompassing 

classical CPUs, GPUs, etc. 

• Visual programming environments (PSE - Problem 

Solving Environment) have been successfully 

used by scientists allowing the easy exploitation of 

the emerging parallel architectures.

• Most of these environments are based on the 

workflow paradigm: a program is a set of processing 

modules organized as a pipeline. Modules are 

interconnected by logical channels transferring huge 

data sets.

HModule’s support

• Module execution

• HRTE chooses the target device according to 

the available implementations and resource use

• A runtime supporting the execution of processes 

over processing units of the heterogeneous 

hardware triggers the start of the computation

• Reading and writing data

• getInputs() and setOutputs() operations uses a 

virtual shared address space accessed through 

an handle that abstracts a vector or matrix 

• The runtime transparently manages the 

movement of data along the hierarchy of 

memory of the heterogeneous hardware

Processing of tomographic images of composite 

materials: one that constitutes the base matrix and 

another that acts as reinforcements

Module

+execute(): void

HModule

+is_HModule()

+hrte_HFunction_addImplementation(): void
+hrte_HFunction_add_opencl_code(): void
+get_input_hrte_handle(): void
+send_output_hrte_handle(): void

+hexecute(): void

+getInputs(): void
+setOutputs(): void

+execute(): void

HRTE Main Characteristics

Supports the combination of existing modules with 

Heterogeneous Modules (HModules)

• HModules can be executed in different platforms 

chosen at runtime

• Transparent management of data copy between 

main memory and accelerator’s memory, including 

semi automatic data partition.

A prototype of HRTE exists using SCIRun PSE toolkit and 

StarPU runtime environment.
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class Hysteresis_HRTE : public HModule {
public:
void hexecute() {
hrte_data_handle matImage, matImageaux;
...
// read module input image and set partitions’ number to be used
get_input_hrte_handle("Input", matImage, ...);
hrte_matrix3d_set_partitions(matImage, nPartitions);
// create an auxiliar image with the same partitions of read image
hrte_matrix3d_create(&matImageaux, nx, ny, nz, ...);
hrte_matrix3d_set_partitions(matImageaux, nPartitions);
// the 1st kernel will be apply to image until there is no change
for (bool thereAreChanges = true, int iter = 0; thereAreChanges; ++iter) {

// 1st kernel: use stencil pattern to get the new image - each voxel is
// equals to the majority of neighbors
hrte_task_stencil(hf_hysteresisFirstPhase, (iter % 2 == 0) ?

matImage:matImageaux, (iter % 2 == 0) ? matImageaux:matImage);
thereAreChanges = !hrte_task_isEquals(matImage,matImageaux);

}
// 2nd kernel: use stencil to eliminate grey voxels adopting the black or
// white in function of the neighborhood
hrte_task_stencil(hf_hysteresisSecondPhase, matImageaux, matImage);
send_output_hrte_handle("Output", matImage);

}
}; // end of class Hysteresis_HRTE
__kernel void hysteresis_firstStep ( ... ) {
...
// set voxel with the value of the majority of neighbors
countNeighborhood(blockin,..., x, y, z, nx, ny, nz, &blacks, &whites, &greys);
...
blockout[INDEX(x, y, z, nx, ny, nz)] = newValue;

}
__kernel void hysteresis_secondStep( ... ) {
...
// set voxel to WHITE or BLACK using majority of neighbors
countNeighborhood(blockin,..., x, y, z, nx, ny, nz, &blacks, &whites, &greys);
...
blockout[INDEX(x, y, z, nx, ny, nz)] = newValue;

}
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Execution times obtained using two different processing 

networks: one with modules implemented directly in 

OpenCL and another with modules implemented using 

HRTE

• OpenCL kernels are the same in both cases

• HRTE allows an average a speedup of 1.67
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nVidia Tesla 

2050

Code fragment corresponds to the hysteresis module:

Bi-segmentation obtains an image with    

three levels: black (reinforcement), white 

(base material), and grey (to be decided)

Hysteresis eliminates the grey voxels by 

considering the color of neighbors

Image Labeling segments image, where 

each reinforcement gets a distinct label
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