
Fig

HETEROGENEOUS PERSONAL 

COMPUTING: A CASE STUDY IN

MATERIALS SCIENCE 

• The main objective of this work is to build a 

Heterogeneous Runtime Environment (HRTE) 

that efficiently supports the execution of programs 

defined by a visual program environment, to be 

executed in a desktop PC with one or more 

accelerators. 

HModules

• Can have several implementations over different 

hardware and parallel runtime environments

• Can be interconnected with other HModules or 

classical Modules

• Minimizing intrusion in PSE code

• PSE scheduler sees HModules as normal Modules

Motivation for HRTE HModules and HRTE Case Study

Author’s name

• Scientific computing has been evolving towards the 

use of heterogeneous architecture encompassing 

classical CPUs, GPUs, etc. 

• Visual programming environments (PSE - Problem 

Solving Environment) have been successfully 

used by scientists allowing the easy exploitation of 

the emerging parallel architectures.

• Most of these environments are based on the 

workflow paradigm: a program is a set of processing 

modules organized as a pipeline. Modules are 

interconnected by logical channels transferring huge 

data sets.

HModule’s support

• Module execution

• HRTE chooses the target device according to 

the available implementations and resource use

• A runtime supporting the execution of processes 

over processing units of the heterogeneous 

hardware triggers the start of the computation

• Reading and writing data

• getInputs() and setOutputs() operations uses a 

virtual shared address space accessed through 

an handle that abstracts a vector or matrix 

• The runtime transparently manages the 

movement of data along the hierarchy of 

memory of the heterogeneous hardware

Processing of tomographic images of composite 

materials: one that constitutes the base matrix and 

another that acts as reinforcements

Module

+execute(): void

HModule

+is_HModule()

+hrte_HFunction_addImplementation(): void
+hrte_HFunction_add_opencl_code(): void
+get_input_hrte_handle(): void
+send_output_hrte_handle(): void

+hexecute(): void

+getInputs(): void
+setOutputs(): void

+execute(): void

HRTE Main Characteristics

Supports the combination of existing modules with 

Heterogeneous Modules (HModules)

• HModules can be executed in different platforms 

chosen at runtime

• Transparent management of data copy between 

main memory and accelerator’s memory, including 

semi automatic data partition.

A prototype of HRTE exists using SCIRun PSE toolkit and 

StarPU runtime environment.

SCIRun Runtime

Module I/O

port support

Module

Management

PSE

Scheduler

Read data from input port

Data Processing

Write data to output port

HRTE

StarPU

HRTE
Process
Control

HRTE
Scheduler

HRTE
Data 

Managent

This work was supported by FCT - Fundação para a Ciência e Tecnologia, 

under project UID/CEC/04516/2013 (NOVA LINCS research center) 

class Hysteresis_HRTE : public HModule {
public:
void hexecute() {
hrte_data_handle matImage, matImageaux;
...
// read module input image and set partitions’ number to be used
get_input_hrte_handle("Input", matImage, ...);
hrte_matrix3d_set_partitions(matImage, nPartitions);
// create an auxiliar image with the same partitions of read image
hrte_matrix3d_create(&matImageaux, nx, ny, nz, ...);
hrte_matrix3d_set_partitions(matImageaux, nPartitions);
// the 1st kernel will be apply to image until there is no change
for (bool thereAreChanges = true, int iter = 0; thereAreChanges; ++iter) {

// 1st kernel: use stencil pattern to get the new image - each voxel is
// equals to the majority of neighbors
hrte_task_stencil(hf_hysteresisFirstPhase, (iter % 2 == 0) ?

matImage:matImageaux, (iter % 2 == 0) ? matImageaux:matImage);
thereAreChanges = !hrte_task_isEquals(matImage,matImageaux);

}
// 2nd kernel: use stencil to eliminate grey voxels adopting the black or
// white in function of the neighborhood
hrte_task_stencil(hf_hysteresisSecondPhase, matImageaux, matImage);
send_output_hrte_handle("Output", matImage);

}
}; // end of class Hysteresis_HRTE
__kernel void hysteresis_firstStep ( ... ) {
...
// set voxel with the value of the majority of neighbors
countNeighborhood(blockin,..., x, y, z, nx, ny, nz, &blacks, &whites, &greys);
...
blockout[INDEX(x, y, z, nx, ny, nz)] = newValue;

}
__kernel void hysteresis_secondStep( ... ) {
...
// set voxel to WHITE or BLACK using majority of neighbors
countNeighborhood(blockin,..., x, y, z, nx, ny, nz, &blacks, &whites, &greys);
...
blockout[INDEX(x, y, z, nx, ny, nz)] = newValue;

}

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4

100 200 300 400 500 600 700

OpenCL

HRTE

PSE Runtime

Module I/O 

port support

Module 

Management
Scheduler

Modules 

Menu

PSE

Module

ModuleHModule

ModuleHModule

ModuleHModule Module

Module

Read data from input port

Data Processing

Write data to output port

HRTE

Execution times obtained using two different processing 

networks: one with modules implemented directly in 

OpenCL and another with modules implemented using 

HRTE

• OpenCL kernels are the same in both cases

• HRTE allows an average a speedup of 1.67

Intel ® Xeon® 

E5506 @ 2.13GHz

nVidia Tesla 

2050

Code fragment corresponds to the hysteresis module:

Bi-segmentation obtains an image with    

three levels: black (reinforcement), white 

(base material), and grey (to be decided)

Hysteresis eliminates the grey voxels by 

considering the color of neighbors

Image Labeling segments image, where 

each reinforcement gets a distinct label

Nuno Oliveira

PhD Student

Supervisor: Pedro Medeiros, UNL

My research focuses on heterogeneous multi-core platforms 

and parallel programming.


